Dioctahedral Phyllosilicates Versus Zeolites and Carbonates Versus Zeolites Competitions as Constraints to Understanding Early Mars Alteration Conditions

Viennet et al. (2017) Journal of Geophysical Research: Planets, Volume 122, Issue 11, pp. 2328-2343

Abstract: Widespread occurrence of Fe,Mg-phyllosilicates has been observed on Noachian Martian terrains. Therefore, the study of Fe,Mg-phyllosilicate formation, in order to characterize early Martian environmental conditions, is of particular interest to the Martian community. Previous studies have shown that the investigation of Fe,Mg-smectite formation alone helps to describe early Mars environmental conditions, but there are still large uncertainties in terms of pH range, oxic/anoxic conditions, etc. Interestingly, carbonates and/or zeolites have also been observed on Noachian surfaces in association with the Fe,Mg-phyllosilicates. Consequently, the present study focuses on the dioctahedral/trioctahedral phyllosilicate/carbonate/zeolite formation as a function of various CO2 contents (100% N2, 10% CO2/90% N2, and 100% CO2), from a combined approach including closed system laboratory experiments for 3 weeks at 120°C and geochemical simulations. The experimental results show that as the CO2 content decreases, the amount of dioctahedral clay minerals decreases in favor of trioctahedral minerals. Carbonates and dioctahedral clay minerals are formed during the experiments with CO2. When Ca-zeolites are formed, no carbonates and dioctahedral minerals are observed. Geochemical simulation aided in establishing pH as a key parameter in determining mineral formation patterns. Indeed, under acidic conditions dioctahedral clay minerals and carbonate minerals are formed, while trioctahedral clay minerals are formed in basic conditions with a neutral pH value of 5.98 at 120°C. Zeolites are favored from pH ≳ 7.2. The results obtained shed new light on the importance of dioctahedral clay minerals versus zeolites and carbonates versus zeolites competitions to better define the aqueous alteration processes throughout early Mars history.


Experimental hydrothermal alteration of basaltic glass with relevance to Mars.

Sætre, C. et al. (2019).  Meteoritics and Planetary Science.  ISSN 1086-9379.

Phyllosilicates, carbonates, zeolites, and sulfates on Mars give clues about the planet's past environmental conditions, but little is known about the specific conditions in which these minerals formed within the crust and at the surface. The aim of the present study was to gain increased understanding on the formation of secondary phases by hydrothermal alteration of basaltic glass. The reaction processes were studied under varying conditions (temperature, pCO2, water:rock ratio, and fluid composition) with relevance to aqueous hydrothermal alteration in fully and partly saturated Martian basalt deposits. Analyses made on reaction products using X‐ray diffraction (XRD) and scanning electron microscope (SEM) were compared with near infrared spectroscopy (NIR) to establish relative detectability and spectral signatures. This study demonstrates that comparable alteration minerals (phyllosilicates, carbonates, zeolites) form from vapor condensing on mineral surfaces in unsaturated sediments and not only in fully water‐saturated sediments. In certain environments where water vapor might be present, it can alter the basaltic bedrock to a suite of authigenic phases similar to those observed on the Martian surface. For the detection of the secondary phases, XRD and SEM‐EDS were found to be superior to NIR for detecting and characterizing zeolites. The discrepancy in detectability of zeolites between NIR and XRD/SEM‐EDS might indicate that zeolites on Mars are more abundant than previously thought.